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Abstract – Much uncertainty exists around how fish communities in shallow lakes will respond to climate change.
In this study, we modelled the effects of increased water temperatures on consumption and growth rates of two
piscivores (northern pike [Esox lucius] and largemouth bass [Micropterus salmoides]) and examined relative effects
of consumption by these predators on two prey species (bluegill [Lepomis macrochirus] and yellow perch [Perca
flavescens]). Bioenergetics models were used to simulate the effects of climate change on growth and food
consumption using predicted 2040 and 2060 temperatures in a shallow Nebraska Sandhill lake, USA. The patterns
and magnitude of daily and cumulative consumption during the growing season (April–October) were generally
similar between the two predators. However, growth of northern pike was always reduced (�3 to �45% change)
compared to largemouth bass that experienced subtle changes (4 to �6% change) in weight by the end of the
growing season. Assuming similar population size structure and numbers of predators in 2040–2060,
future consumption of bluegill and yellow perch by northern pike and largemouth bass will likely increase (range:
3–24%), necessitating greater prey biomass to meet future energy demands. The timing of increased predator
consumption will likely shift towards spring and fall (compared to summer), when prey species may not be
available in the quantities required. Our findings suggest that increased water temperatures may affect species at the
edge of their native range (i.e. northern pike) and a potential mismatch between predator and prey could exist.
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Introduction

The onset of climate change will likely affect most
ecological processes and functions as well as influence
living organisms both directly and indirectly by affect-
ing their physiology, growth and behaviour (Petersen
& Kitchell 2001; Winder & Schindler 2004 P€ortner &
Peck 2010); however, many uncertainties remain about
the direction and/or magnitude of these alterations. For
ectotherms such as fish, temperature shifts may have
substantial impacts on the timing of reproduction,
development, growth, mortality, recruitment and meta-
bolism (Magnuson et al. 1979; Shuter & Post 1990;

Tonn 1990; Brandt et al. 2002; Casselman 2002).
Increased temperatures can affect fish metabolism by
elevating metabolic demand to maintain cardiac func-
tion and respiration (Brown et al. 2004). Increased
metabolism can lead to increased consumption rates
that directly affect individual growth and survival rates
(Christie & Regier 1988) and can indirectly affect the
fish assemblage structure through mechanisms such as
competition and predation (Biro et al. 2007; McCarthy
et al. 2009; Wuellner et al. 2010).
Despite the growing wealth of information on

climate change and subsequent effects on fish popula-
tions in lotic cold-water systems, information is
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lacking on how fish communities will respond to cli-
mate change in warm-water ecosystems. Many
changes will likely occur within these systems as
well, with temperature having arguably one of the lar-
gest impacts (Walther et al. 2002). More attention has
been given to individual species and how they might
respond to changes in climate, while fewer studies
have examined species interactions such as predator–
prey dynamics. At higher temperatures, increased
metabolic demands of predators must be met by simi-
lar increases in prey production to maintain balanced
predatory–prey populations (Hill & Magnuson 1990;
Johnson et al. 2008; Wuellner et al. 2010). Gaining
insight into the effects of climate change on fish com-
munities is important for future conservation efforts
and management decisions (Tonn 1990).
Modelling provides a valuable tool to explore the

potential impacts of increased temperature on fish
physiology and understanding how those changes
affect piscivores and their prey base. Changes in sea-
sonal water temperature could affect species interac-
tions, food consumption and fish production. The
changes in fish physiology and assemblage structure
will likely be most substantial where fish species are
at the edge of their native range and thus examining
how predators respond to changes in temperatures
may provide the most insight into assemblage level
effects (Magnuson 2001; Casselman 2002). Specifi-
cally, bioenergetics modelling (Hanson 1997) provides
a robust method to explore the temperature effects on
individual physiology that has been applied to a wide
variety of systems and species (e.g. Chipps & Wahl
2008; Johnson et al. 2008; McCarthy et al. 2009). By
accounting for temperature-dependence of fundamental
energy budget components, bioenergetics modelling
also offers insight to other processes that could be
indirectly influenced by climate change (e.g. spawning
phenology, recruitment, mortality and behaviour).
The objectives of this study were to model: (i) the

direct effects of increased temperatures on consump-
tion and growth rates of northern pike (Esox lucius)
and largemouth bass (Micropterus salmoides) popula-
tions and (ii) the potential indirect effects of con-
sumption by northern pike and largemouth bass
predators on bluegill (Lepomis macrochirus) and yel-
low perch (Perca flavescens) prey populations.
Future consumption by largemouth bass and northern
pike may require a larger prey base to meet these
demands (e.g. compensatory response) based on cli-
mate change projections. Primarily, we were inter-
ested in the magnitude (substantial or minimal) and
direction (lower or higher) of change related to tem-
perature rather than specific estimates of growth, con-
sumption and predation effects because of future
population dynamics uncertainties for these species
(i.e. recruitment, mortality).

We focused our study on a shallow lake ecosystem
that contained two dominant predators common in
many systems in the USA (largemouth bass and
northern pike) and two common prey species (blue-
gill and yellow perch) within the Sandhills region of
north-central Nebraska. These systems were ideal for
studying the effect of changing water temperatures.
First, most lakes are very shallow (i.e. 2.9 m average
maximum depth; McCarraher 1977; Paukert & Willis
2000) and will respond much quicker to fluctuating
temperatures than deeper lentic systems (Murdoch &
Power 2013). Second, fish assemblages are relatively
simple (Paukert et al. 2002b), enabling more accurate
interpretations of potential future effects because
complex food webs and species interactions are mini-
mized. Third, northern pike are at the southern edge
of their native range in the Sandhills while large-
mouth bass are not (Page & Burr 1991), offering an
opportunity to compare two species with different
thermal tolerances. Thus, we hypothesized that north-
ern pike in these lakes will be most affected by water
temperature increases that may exceed their optimal
upper thermal limit and ultimately result in increased
consumption to meet their metabolic demands (Cas-
selman & Lewis 1996). Alternatively, largemouth
bass will likely be less affected by increases in tem-
perature as water temperatures may increase towards
their optimal growth temperature (Niimi & Beamish
1974), followed by a slight increase in consumption
and metabolism. We also expected greater predation
pressure to be exerted on prey populations following
these elevated changes in predator consumption rates,
especially by northern pike.

Methods

Study site

West Long Lake is a 25-ha natural lake located on
the Valentine National Wildlife Refuge in the Sand-
hills region of Cherry County, Nebraska, USA
(Fig. 1). West Long Lake is a shallow eutrophic lake
with a mean depth of 1.2 m and a maximum depth of
1.8 m; the lake is dominated by submerged vegeta-
tion (80% surface area coverage) in mid-summer
(Paukert & Willis 2000) and is surrounded almost
entirely by native grasslands (McCarraher 1977). The
fish assemblage is relatively simple and includes
largemouth bass, northern pike, bluegill, yellow perch
and black bullhead (Ameiurus melas).

Field and laboratory methods

Largemouth bass (N = 334) and northern pike
(N = 21) diets were assessed four times throughout
the 2001 growing season (Table 1). Stomach contents
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were collected April 18–24, June 19–21, August 5–6,
and October 4, 7 and 15. Fish were collected using a
combination of electrofishing and short-term gill net
sets (Paukert et al. 2003). Stomach contents were
extracted using acrylic tubes and gastric lavage (Light
et al. 1983; Kamler & Pope 2001). Diets were col-
lected from two length categories of largemouth bass
(<300 mm and >300 mm, total length [TL]) and
northern pike (<400 mm and >400 mm, TL). Diet
items were identified to the lowest possible taxo-
nomic resolution (e.g. family for macroinvertebrates
and species for fish) and summarized as per cent of
diet taxa by wet weight. Caloric values of prey items
were obtained from published reports (Cummins &
Wuycheck 1971; Kitchell et al. 1974; Craig 1977;
Rice et al. 1983; Bevelheimer et al. 1985; Bryan
et al. 1996).
Mark–recapture was used to estimate the number

of largemouth bass and northern pike in West Long
Lake. Schnabel multiple mark–recapture population
estimates were used to estimate population size for
both length categories of largemouth bass (May 22,
30, 31 and June 5–7, 2001) and northern pike (April

2–8, 2002). Northern pike were sampled and recap-
tured with modified fyke nets, and largemouth bass
were collected and recaptured by night-time elec-
trofishing. The left pectoral fin was clipped for both
species, and lengths and weights were recorded for
the first 100 fish of each species sampled to index
size structure. For a more detailed description of the
sampling methods used to estimate population size or
biomass, see Paukert et al. (2002a) and DeBates
(2003).

Direct effects on consumption and growth rates of
predators

Potential effects of climate change on the fish assem-
blage in West Long Lake were assessed using bioen-
ergetics models (Hanson 1997) to estimate
largemouth bass and northern pike consumption and
growth under observed and simulated temperature
regimes. Water temperature was recorded every 2 h
in 2001 for the duration of the study using a tempera-
ture logger placed at the centre of the lake 0.5 m
below the surface. Because Sandhill lakes are

Fig. 1. State of Nebraska, USA (bottom left), and location of West Long Lake (upper right).

489

Fish assemblage climate change effects



polymictic, they do not typically stratify during sum-
mer months (Paukert & Willis 2000). We used pre-
dicted 2040–49 and 2060–69 (hereafter 2040 and
2060 respectively) air temperatures from three cli-
mate models coupled with regional climate downscal-
ing for Cherry County, Nebraska (Hostetler et al.
2011; Table 1), to simulate effects of climate change
on consumption and growth of fish predators (i.e.
MPI ECHAM5 – Roeckner et al. 2003; USGS GEN-
MOM – Alder et al. 2010; GFDL CM2.0 – Delworth
et al. 2006). Downscaled regional models provided
the accuracy required for the simulations used for this
study compared to global general circulation models
(GCMs) that are more generalized and coarse in reso-
lution. Therefore, each of the bioenergetics simula-
tions described below was run three separate times to
accommodate each climate change model, using pre-
dicted 2040 and 2060 temperature changes.
Predicted air temperatures from each of the climate

models were used to simulate water temperatures
observed in West Long Lake. As in other studies, we
adjusted water temperature to account for correspond-
ing changes in air temperature (Pine & Allen 2001;
Wuellner et al. 2010; Pease & Paukert 2014); for
example, if mean air temperature increased by 1 °C,
then we adjusted mean water temperature by +1 °C.
Additionally, we examined empirical data from a
nearby lake (i.e. Pelican Lake, NE, USA) with a sim-
ilar morphometry and found a strong relationship
between water temperatures and air temperatures dur-
ing the 2010 and 2011 growing seasons
(slope = 1.03; F1, 414 = 1.64, P = 0.20, R2 = 0.83),
thus providing additional support for our water tem-
perature adjustments.
Diet information for largemouth bass and northern

pike was used for bioenergetics simulations
(Table 1). However, sample sizes were not sufficient
to conduct bioenergetics simulations on age-specific
cohorts, resulting in the use of two size categories
per species. A natural break in length frequency

distributions allowed for the separation of these
length groups and minimized overlap (i.e. between
size groups) in the modelling simulations (Paukert
et al. 2002a; DeBates 2003). Bioenergetics modelling
was used to evaluate two growth scenarios for each
size group of fish predator; a ‘no-growth’ simulation
based on maintenance consumption (i.e. no growth
but metabolic demands were met) and a ‘probable
growth’ simulation based on empirical growth data
for northern pike and largemouth bass. Both simula-
tions were conducted using observed water tempera-
tures in 2001 (i.e. baseline models), and predicted
water temperatures in 2040, and 2060 (Table 2).
Daily consumption throughout the growing season
(April–October, Northern Hemisphere) and cumula-
tive food consumption at the end of the growing sea-

Table 1. Sample sizes for bioenergetics modelling of largemouth bass (LMB) and northern pike (NOP) containing diet items by length categories during April,
June, August and October 2001 (no samples ‘–’ collected during May, July and September) in West Long Lake. Mean monthly predicted temperature changes
(°C) in Cherry County, Nebraska, during the years 2040 and 2060 according to three regional climate models (i.e. MPI, USGS and GFDL; Hostetler et al. 2011).

Month

Sample sizes Mean monthly predicted temperature changes

LMB NOP 2040 2060

<300 mm >300 mm <400 mm >400 mm MPI USGS GFDL MPI USGS GFDL

April 1 44 1 2 0.62 �0.18 �0.09 2.44 1.47 1.97
May – – – – 1.23 �0.10 1.34 3.03 1.31 3.06
June 22 39 1 0 0.96 0.28 2.32 2.40 1.09 2.96
July – – – – 0.96 0.94 2.07 2.34 2.84 3.36
August 31 35 7 1 0.94 1.33 2.17 2.84 2.99 3.14
September – – – – 1.73 0.77 1.96 2.50 2.10 1.73
October 28 27 5 1 2.01 1.30 0.98 2.65 2.93 3.51

Table 2. Summary of the bioenergetics simulations used to assess (i)
direct effects on consumption and growth rates of predators (top) and (ii)
indirect effects of consumption by predators on prey populations (bottom).
No-growth models did not allow for growth, and only metabolic demands
were satisfied. Probable growth models used P-values generated from the
2001 baseline models. Multiple response metrics were generated and
evaluated for each climate change model (i.e. MPI, USGS and GFDL)
during three separate time periods (2001, 2040, 2060) where one variable
in addition to temperature was manipulated (no growth, P-value) to assess
climate change effects in West Long Lake.

Simulation Time period
Variable
manipulated

Response
metric

Predator consumption and growth rates
No growth 2001 (baseline);

2040; 2060
No growth Daily consumption,

cumulative consumption
Probable
growth

2001 (baseline);
2040; 2060

P-value Growth or final end weight

Consumption of prey populations by predators
No growth 2001 (baseline);

2040; 2060
No growth Cumulative consumption,

per cent standing stock
consumed

Probable
growth

2001 (baseline);
2040; 2060

P-value Cumulative consumption,
per cent standing stock
consumed
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son were assessed under the no-growth models. Fur-
thermore, final weights at the end of the growing sea-
son were also recorded for the probable growth
models (Table 2).
To examine changes in consumption related to cli-

mate change, a baseline model was constructed using
temperatures recorded in 2001 and a no-growth esti-
mate. Results from the baseline no-growth model
were used to compare changes (%) in daily and
cumulative consumption under the predicted 2040
and 2060 temperature regimes, again using a no-
growth model. Mean monthly per cent change in
daily consumption and per cent change in total cumu-
lative consumption were calculated for largemouth
bass and northern pike throughout the growing sea-
son (April–October). Growth rates were also esti-
mated under probable growth scenarios for
largemouth bass and northern pike. Probable growth
increments of northern pike (149 g�y�1: <400 mm;
1151 g�y�1: >400 mm) were estimated from mean
annual growth increments of eleven Sandhill northern
pike populations during 1998 and 1999 (Paukert &
Willis 2000). Probable growth increments for large-
mouth bass (177 g�y�1: <300 mm; 466 g�y�1:
>300 mm) were estimated from annual growth incre-
ments from West Long Lake (Paukert & Willis
2000). Similar to the no-growth models, 2001 tem-
peratures and the probable growth increments were
used to develop baseline consumption models (Carey
& Zimmerman 2014). P-values (per cent of maxi-
mum consumption) generated from baseline bioener-
getics simulations (i.e. 2001 consumption) were held
constant for largemouth bass and northern pike under
the predicted 2040 and 2060 temperatures. Effects of
warmer water temperature on growth of largemouth
bass and northern pike were assessed by comparing
the per cent change in final weight between 2001 and
those predicted from the 2040 and 2060 temperature
regimes.

Indirect effects of consumption by predators on prey
populations

Bioenergetics simulations were used to examine the
predatory effects of largemouth bass and northern
pike on bluegill and yellow perch populations under
different temperature scenarios in West Long Lake.
Simulations were used to examine no growth and
probable growth during the 2001 baseline, 2040 and
2060 temperature regimes (Table 2). For the 2040
and 2060 simulations, cumulative consumption of yel-
low perch and bluegill at the end of a growing season
was used to calculate the per cent change in total
consumption by the predator population (i.e. both size
classes of northern pike and largemouth bass) com-
pared to the 2001 baseline conditions (Table 2).

Results

Direct effects on consumption and growth rates of
predators

Daily consumption by largemouth bass increased
each month under the predicted 2040 and 2060 tem-
perature models (Fig. 2). Average per cent change in
daily consumption for both length categories of large-
mouth bass increased each month across the pre-
dicted 2040 and 2060 temperature models and ranged
from 0.25 to 67.2% (Fig. 2). The greatest per cent
increase in average daily consumption by largemouth
bass typically occurred in the spring (April and May)
and fall (September and October; Fig. 2). In contrast,
estimates of average daily consumption by northern
pike increased during April, May and June, decreased
or remained nearly the same for July and August,
and then increased again during September and Octo-
ber under the 2040 and 2060 temperature models
(Fig. 2). Average per cent change in daily consump-
tion by northern pike across the 2040 and 2060 tem-
perature regimes ranged from �17.7 to 76.1%
(Fig. 2).
Total food consumption by largemouth bass

increased by approximately 5–15% under the pre-
dicted 2040 temperature models and approximately
20–30% under the predicted 2060 models (Fig. 3).
Similarly, total consumption by northern pike
increased by approximately 4–13% under the
predicted 2040 temperature models and approxi-
mately 14–24% under the predicted 2060 models
(Fig. 3). The per cent change in mean daily and total
food consumption was greater under the predicted
2060 temperature models compared to the 2040 mod-
els for both largemouth bass and northern pike
(Figs 2 and 3).
Bioenergetics simulations resulted in different

growth outcomes for both length categories of large-
mouth bass under 2040 temperature models
(MPI = gain weight; USGS and GFDL = lose
weight; Fig. 4). However, changes in predicted final
weights for both size categories of largemouth bass
in 2040 were small compared to 2001 predicted final
weights, ranging from a �1.3 to a 4.3% difference
(Fig. 4). Furthermore, the 2060 temperature models
predicted the small size category of largemouth bass
to gain weight (1.7%) according to the MPI model
but lose weight in both USGS (�5.1%) and GFDL
(�6.4%) climate models (Fig. 4). The large size cate-
gory of largemouth bass lost weight by the end of the
growing season under all 2060 temperature models,
with final weights ranging from �0.1 to �4.1%
(Fig. 4). In contrast, northern pike had lower final
weights by the end of the growing season under all
the 2040 and 2060 temperature models (Fig. 4). The
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per cent differences in final weights between the
2001 temperature model and the 2040 and 2060 tem-
perature models ranged from �3.3 to �27.5% and
�17.7 to �45.3%, respectively, for northern pike
(Fig. 4).

Indirect effects of consumption by predators on prey
populations

The largemouth bass population in West Long Lake
in June 2001 was estimated at 2047 fish (95% confi-
dence interval: 1670–2545); 22% (450 largemouth
bass) were <300 mm and 78% (1597 largemouth
bass) were >300 mm (TL range: 125–550 mm). The
northern pike population in West Long Lake in April
2002 was estimated at 909 fish (95% confidence
interval: 720–1180); 56% (509 northern pike) were
<400 mm and 44% (400 northern pike) were
>400 mm (TL range: 250–750 mm).

Using the no-growth scenario, total consumption
of bluegill (kg�ha�1) by all predators increased by
approximately 8–18% under predicted 2040 tempera-
ture models and increased by 22–24% under pre-
dicted 2060 temperature models, compared to the
2001 baseline consumption model (Table 3). Under
the probable growth scenario, largemouth bass and
northern pike total consumption (kg�ha�1) of bluegill
increased by 7–13% under predicted 2040 tempera-
ture models and increased approximately 16–17%
under predicted 2060 temperature models (Table 3).
Again using the no-growth scenario, total con-

sumption (kg�ha�1) of yellow perch by largemouth
bass and northern pike increased by approximately
5–14% under predicted 2040 temperature models and
increased by about 17–23% under predicted 2060
temperature models, compared to the 2001 baseline
model (Table 3). Under the probable growth
scenario, largemouth bass and northern pike total
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consumption (hg�ha�1) of yellow perch increased by
approximately 3–10% under predicted 2040 tempera-
ture models and increased by about 12–16% under
predicted 2060 temperature models (Table 3).

Discussion

The change in daily and total consumption between
largemouth bass and northern pike was not as pro-
nounced as expected. While both species generally
consumed substantially more under warmer climate
scenarios, the magnitude and patterns were quite sim-
ilar despite different species-specific thermal toler-
ances and optimums (Coutant & Cox 1976;
Casselman 1978; Pierce 2012), and despite the fact
that northern pike are at the southern edge of their
range and largemouth bass are not (Page & Burr
1991). One major difference was found during the
summer months (i.e. July and August) when northern
pike consumed less than they did in 2001 compared
to largemouth bass; but overall, both species will
likely require a greater annual supply of prey. Pat-
terns in daily consumption also revealed a temporal

aspect that is equally as important as the magnitude
and direction of overall consumption. Durant et al.
(2007) explored this relationship in greater detail and
exposed critical phenology mismatches between
reproductive processes and predator–prey relation-
ships that are unlikely to align with climate change.
Our study suggested that much higher prey demands
will be anticipated for largemouth bass and northern
pike during the fall (September and October) and
spring (April and May) compared to 2001 estimates.
Not only will an increase in prey be required for
these two predators but the timing of prey availability
will be critical, particularly because predation pres-
sure on bluegill and yellow perch populations is
already high in these systems (Paukert et al. 2003).
Increased recruitment and production of both prey
species will be necessary to sustain largemouth bass
and northern pike populations.
Feeding and growth of northern pike were pre-

dicted to respond to climate change to a greater
extent than largemouth bass because Sandhill lakes
are located near the southern edge of the northern
pike’s range (Page & Burr 1991). Largemouth bass
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did not experience much difference in final weight,
whereas northern pike suffered weight loss under ele-
vated temperatures and in some cases (i.e. small size
classes – 2060) over 30%. Northern pike are a cool-
water fish with an optimum growth temperature range
of 20–24 °C (Pierce 2012). In 2001, water tempera-
tures in West Long Lake surpassed this range during
July and August, as well as portions of June and
September (Fig. 5). Additionally, West Long Lake is
a shallow, polymictic lake that has no summer ther-
mal stratification, and thus no thermal refuge for
large northern pike (Paukert & Willis 2000). Growth
rates and condition of northern pike in West Long
Lake are already lower than their northern counter-
parts (Paukert & Willis 2003), and future increases in
water temperature will likely exacerbate limitations
on growth potential. Other studies have revealed
range limitations and habitat shifts for several species
due to temperature or climate change (Christie &
Regier 1988; Perry et al. 2005). In contrast, large-
mouth bass are a warmwater fish with an optimum
growth temperature range of 26–28 °C (Coutant &
Cox 1976). In 2001, water temperatures in West
Long Lake reached this range for about a month from
July to August (Fig. 5). However, the projected tem-

peratures for 2040 predict that water temperatures
will enter this range about 2 weeks earlier, near the
end of June (Fig. 5). Therefore, water temperatures
in 2040 may be more optimal for largemouth bass
growth resulting in the slight increase in growth
observed during that decade. Increased growth rates
have been predicted for other species that may expe-
rience elevated water temperatures compared to cur-
rent conditions (King et al. 1999; Pease & Paukert
2014). Under projected 2060 temperatures, water
temperatures will exceed optimal thermal largemouth
bass conditions for about a month from July to
August, resulting in reduced growth compared to
2001. The decrease in growth rates for largemouth
bass during 2060 compared to the more recent time
period was not nearly as extreme as it was for north-
ern pike.
Largemouth bass growth was minimally influenced

by changes in water temperature whereas northern
pike were moderately influenced by 2040 modifica-
tions in temperature regimes and influenced even
more by 2060 temperatures. Northern pike gained
less weight in both time periods compared to the
2001 model. Decreased growth of northern pike
could result in an alteration of maturation rates,
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fecundity and overall fitness (Roff 1984; Shuter &
Meisner 1992). Climate change could also affect
recruitment and egg development (Straile et al. 2007;
Karjalainen et al. 2014). Provided that overall popu-
lation dynamics become altered (recruitment, growth,
and mortality; Dudgeon et al. 2006), consequences of
increased temperatures for northern pike in the
Nebraska Sandhills could extend to the entire fish
assemblage because of their primary predatory role in
these systems (Paukert & Willis 2003). Therefore,
largemouth bass could become the primary predator
in many of these systems if northern pike cannot tol-
erate expected temperatures or find thermal refuge.
According to estimated consumption rates, this would
benefit yellow perch populations as northern pike
consumed nearly twice the amount of yellow perch
compared to largemouth bass. Community-level
impacts could be mediated through temperature shifts
that directly affect predator consumption rates and
growth but indirectly affect prey populations via
changes in predation pressure (Jeppesen et al. 2010).
Climate change may therefore lead to future Sandhill
fish communities that are dominated by largemouth
bass and smaller populations of bluegill (increased

Table 3. Estimated consumption (kg�ha�1) of bluegill and yellow perch by two length categories of largemouth bass (LMB) and northern pike (NOP) based on
no growth (left) and probable growth (right) simulations in 2001 and predicted 2040 and 2060 water temperatures from three different climate change models
(i.e. MPI, USGS, and GFDL) in West Long Lake, Nebraska. No bluegill were consumed by LMB <300 mm total length or NOP >400 mm total length. Total
consumption (kg�ha�1) and the per cent change in total consumption (i.e. consumption by all predators) under all predicted future temperature scenarios.

No growth Probable growth

2001 MPI USGS GFDL 2001 MPI USGS GFDL

Bluegill
2040
LMB >300 mm 4.9 5.5 5.4 5.8 8.6 9.3 9.2 9.7
NOP <400 mm 0.1 0.1 0.1 0.1 0.8 0.9 0.9 0.9
Total consumption 5.0 5.5 5.4 5.9 9.4 10.2 10.1 10.6
Change in consumption (%) NA 10.0 8.0 18.0 NA 8.5 7.4 12.8

2060
LMB >300 mm 4.9 6.1 6.1 6.1 8.6 9.9 10.1 10
NOP <400 mm 0.1 0.1 0.1 0.1 0.8 1.0 1.0 1.0
Total consumption 5.0 6.1 6.2 6.2 9.4 10.9 11.1 11.0
Change in consumption (%) NA 22.0 24.0 24.0 NA 16.0 18.1 17.0

Yellow perch
2040
LMB <300 mm 1.5 1.6 1.6 1.8 3.8 4.0 4.0 4.1
LMB >300 mm 24.9 27.6 26.4 29.4 41.0 44.1 42.7 46.1
NOP <400 mm 0.7 0.7 0.7 0.8 4.7 4.8 4.7 4.9
NOP >400 mm 48.2 51.4 50.2 53.8 78.9 82.7 81.3 85.7
Total consumption 75.3 81.3 78.9 85.8 128.4 135.5 132.6 140.7
Change in consumption (%) NA 8.0 4.8 13.9 NA 5.5 3.3 9.6

2060
LMB <300 mm 1.5 1.8 1.8 1.8 3.8 4.2 4.2 4.2
LMB >300 mm 24.9 31.7 30.4 32.6 41.0 48.8 47.3 49.9
NOP <400 mm 0.7 0.9 0.8 0.9 4.7 5.1 5.0 5.1
NOP >400 mm 48.2 56.3 55.0 57.4 78.9 88.8 87.2 90.1
Total consumption 75.3 90.6 88.0 92.8 128.4 146.9 143.6 149.3
Change in consumption (%) NA 20.3 16.9 23.2 NA 14.4 11.8 16.3
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Fig. 5. Mean monthly water temperatures (°C) during 2001, and
projected 2040 and 2060. Temperature averages across each cli-
mate change model (i.e. MPI, USGS and GFDL) are given for
graphing simplicity and clarity, rather than depicting each model
separately (as conducted in the analyses). Thermal optimum
growth temperatures are also shown as horizontal reference lines
for largemouth bass and northern pike (Coutant & Cox 1976;
Pierce 2012).
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predation by largemouth bass) and larger populations
of yellow perch (predation release from northern pike
– but see Discussion on temporal shifts in
consumption and competitive interactions between
prey species).
The potential for competition between northern

pike and largemouth bass for available prey (e.g. yel-
low perch) could become an important factor to con-
sider in the future (Lehtonen 1996). We postulate
that largemouth bass would be favoured in this case
as northern pike already exhibit poor condition and
could experience shortages in preferred prey items
(i.e. yellow perch) (Paukert & Willis 2003). Yellow
perch and bluegill populations are critically important
for largemouth bass and northern pike in the
Nebraska Sandhills (Paukert et al. 2002b, 2003;
DeBates et al. 2003; Jolley et al. 2008), as evident
by the current and future contribution to overall con-
sumption and growth. Other studies have identified
the significance of yellow perch and bluegill as prey
for both of these species across their geographic
range and in more diverse fish assemblages that
could offer other foraging options (Seaburg & Moyle
1964; Post & Prankevicius 1987; Olson 1996).
Assuming predator populations remain similar, it is
possible that prey fish biomass could meet the con-
sumption demands of both predators so long as their
populations show a congruent (i.e. compensatory)
response to increased water temperature; in this case,
combined biomass of bluegill and yellow perch
would need to increase by up to 24% compared to
observed conditions.
Recruitment dynamics and year-class strength can

vary for both species in Sandhill lakes but are more
consistent than other systems containing bluegill and
yellow perch (Kaemingk et al. 2014a,b). Although
annual consumption demands may not have increased
substantially for either species (always <30%), a shift
occurred in the timing of when prey is required to
meet these consumptive demands, especially for
northern pike. Subtle changes and shifts in timing of
consumption for northern pike and largemouth bass
may influence how much prey is available (e.g.
spring vs. summer feeding) and the overall impact it
has on prey populations. Elevated predation pressure
during spring when yellow perch are spawning could
affect yellow perch recruitment as juveniles are much
smaller and more vulnerable to predation (Sogard
1997). Predation intensity could remain high well
into the fall season for both species (i.e. focusing
more on late-hatched bluegill populations), and this
may create a unique scenario as most bluegill recruit-
ment is generated from late hatching individuals in a
Nebraska Sandhill lake (Kaemingk et al. 2014b), fur-
ther impacting long-term bluegill population structure
and dynamics, but may also provide a source of prey

in the fall for these predators. Future research is
needed to examine how shifting predation pressure
and consumption at different times of the year could
alter fish assemblage dynamics. Additionally,
accounting for potential growth and elevated con-
sumption during other seasons (i.e. winter) should be
explored as optimal temperatures could extend
beyond typical growing seasons (i.e. spring, summer,
and fall) for many species.
Our study highlighted several important aspects of

how climate change may affect warm-water fish com-
munities in shallow lakes. Growth of northern pike
and largemouth bass varied among climate warming
scenarios owing to differences in optimal metabolic
temperatures between species. Because West Long
Lake is near the southern extent of the northern
pike’s natural range, a warming climate had relatively
larger impacts on growth rate of northern pike com-
pared to largemouth bass. Thus, the effects of climate
change on predator energy demands extend to preda-
tion on prey fishes resulting in increased and perhaps
differential predation pressure on prey populations.
Moreover, climate change may lead to a shift in the
timing of predator–prey interactions which could lead
to a shift in fish assemblage structure and dynamics
within shallow lake ecosystems.
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